An analytic Hochschild-Kostant-Rosenberg theorem

نویسندگان

چکیده

Let R be a Banach ring. We prove that the category of chain complexes complete bornological R-modules (and several related categories) is derived algebraic context in sense Raksit. then use framework algebra to version Hochschild-Kostant-Rosenberg Theorem, which relates circle action on Hochschild de Rham-differential-enriched-de Rham simplicial, commutative, algebra. This has geometric interpretation language analytic geometry, namely, loop stack equivalent shifted tangent stack. Using this we extend our results schemes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a generalized Connes-Hochschild-Kostant-Rosenberg theorem

The central result of this paper is an explicit computation of the Hochschild and cyclic homologies of a natural smooth subalgebra of stable continuous trace algebras having smooth manifolds X as their spectrum. More precisely, the Hochschild homology is identified with the space of differential forms on X, and the periodic cyclic homology with the twisted de Rham cohomology of X, thereby gener...

متن کامل

On the Hochschild–kostant–rosenberg Map for Graded Manifolds

We show that the Hochschild–Kostant–Rosenberg map from the space of multivector fields on a graded manifold N (endowed with a Berezinian volume) to the cohomology of the algebra of multidifferential operators on N (as a subalgebra of the Hochschild complex of C∞(N)) is an isomorphism of Batalin–Vilkovisky algebras. These results generalize to differential graded manifolds.

متن کامل

An analytic KAM-Theorem

We prove an analytic KAM-theorem, which is used in [1], where the differential part of KAM-theory is discussed. Related theorems on analytic KAM-theory exist in the literature (e. g., among many others, [7], [8], [13]). The aim of the theorem presented here is to provide exactly the estimates needed in [1].

متن کامل

On the Nonlinear Convexity Theorem of Kostant

A classical result of Schur and Horn [Sc, Ho] states that the set of diagonal elements of all n x n Hermitian matrices with fixed eigenvalues is a convex set in IRn. Kostant [Kt] has generalized this result to the case of any semisimple Lie group. This is often referred to as the linear convexity theorem of Kostant: picking up the diagonal of a Hermitian matrix is a linear operation. This resul...

متن کامل

Differential Forms on Noncommutative Spaces

This paper is intended as an introduction to noncommutative geometry for readers with some knowledge of abstract algebra and differential geometry. We show how to extend the theory of differential forms to the “noncommutative spaces” studied in noncommutative geometry. We formulate and prove the Hochschild-Kostant-Rosenberg theorem and an extension of this result involving the Connes differential.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108694